4 research outputs found

    Runtime Monitoring On Hard Real-Time Operating Systems

    Get PDF
    This thesis will compare and evaluate different approaches in integrating runtime monitors into processes running on a hard real-time operating system. The host system is a single board computer (SBC) with a VxWorks 653 hard real-time operating system henceforth referred to as a flight control computer (FCC). The FCC is an integrated modular avionics (IMA) system representative of actual flight computers. VxWorks 653 is based on the ARINC 653 standard and provides time and space partitioning for IMA systems.M.S

    A Virtual Laboratory for Aviation and Airspace Prognostics Research

    Get PDF
    Integration of Unmanned Aerial Vehicles (UAVs), autonomy, spacecraft, and other aviation technologies, in the airspace is becoming more and more complicated, and will continue to do so in the future. Inclusion of new technology and complexity into the airspace increases the importance and difficulty of safety assurance. Additionally, testing new technologies on complex aviation systems and systems of systems can be challenging, expensive, and at times unsafe when implementing real life scenarios. The application of prognostics to aviation and airspace management may produce new tools and insight into these problems. Prognostic methodology provides an estimate of the health and risks of a component, vehicle, or airspace and knowledge of how that will change over time. That measure is especially useful in safety determination, mission planning, and maintenance scheduling. In our research, we develop a live, distributed, hardware- in-the-loop Prognostics Virtual Laboratory testbed for aviation and airspace prognostics. The developed testbed will be used to validate prediction algorithms for the real-time safety monitoring of the National Airspace System (NAS) and the prediction of unsafe events. In our earlier work1 we discussed the initial Prognostics Virtual Laboratory testbed development work and related results for milestones 1 & 2. This paper describes the design, development, and testing of the integrated tested which are part of milestone 3, along with our next steps for validation of this work. Through a framework consisting of software/hardware modules and associated interface clients, the distributed testbed enables safe, accurate, and inexpensive experimentation and research into airspace and vehicle prognosis that would not have been possible otherwise. The testbed modules can be used cohesively to construct complex and relevant airspace scenarios for research. Four modules are key to this research: the virtual aircraft module which uses the X-Plane simulator and X-PlaneConnect toolbox, the live aircraft module which connects fielded aircraft using onboard cellular communications devices, the hardware in the loop (HITL) module which connects laboratory based bench-top hardware testbeds and the research module which contains diagnostics and prognostics tools for analysis of live air traffic situations and vehicle health conditions. The testbed also features other modules for data recording and playback, information visualization, and air traffic generation. Software reliability, safety, and latency are some of the critical design considerations in development of the testbed

    Architecture and Information Requirements to Assess and Predict Flight Safety Risks During Highly Autonomous Urban Flight Operations

    Get PDF
    As aviation adopts new and increasingly complex operational paradigms, vehicle types, and technologies to broaden airspace capability and efficiency, maintaining a safe system will require recognition and timely mitigation of new safety issues as they emerge and before significant consequences occur. A shift toward a more predictive risk mitigation capability becomes critical to meet this challenge. In-time safety assurance comprises monitoring, assessment, and mitigation functions that proactively reduce risk in complex operational environments where the interplay of hazards may not be known (and therefore not accounted for) during design. These functions can also help to understand and predict emergent effects caused by the increased use of automation or autonomous functions that may exhibit unexpected non-deterministic behaviors. The envisioned monitoring and assessment functions can look for precursors, anomalies, and trends (PATs) by applying model-based and data-driven methods. Outputs would then drive downstream mitigation(s) if needed to reduce risk. These mitigations may be accomplished using traditional design revision processes or via operational (and sometimes automated) mechanisms. The latter refers to the in-time aspect of the system concept. This report comprises architecture and information requirements and considerations toward enabling such a capability within the domain of low altitude highly autonomous urban flight operations. This domain may span, for example, public-use surveillance missions flown by small unmanned aircraft (e.g., infrastructure inspection, facility management, emergency response, law enforcement, and/or security) to transportation missions flown by larger aircraft that may carry passengers or deliver products. Caveat: Any stated requirements in this report should be considered initial requirements that are intended to drive research and development (R&D). These initial requirements are likely to evolve based on R&D findings, refinement of operational concepts, industry advances, and new industry or regulatory policies or standards related to safety assurance

    Runtime Monitoring On Hard Real-Time Operating Systems

    No full text
    This thesis will compare and evaluate different approaches in integrating runtime monitors into processes running on a hard real-time operating system. The host system is a single board computer (SBC) with a VxWorks 653 hard real-time operating system henceforth referred to as a flight control computer (FCC). The FCC is an integrated modular avionics (IMA) system representative of actual flight computers. VxWorks 653 is based on the ARINC 653 standard and provides time and space partitioning for IMA systems
    corecore